1 (ii)	lag phase: (dry) yeast adapting to the environment/AW; yeast are reproducing/dividing; log phase: no limiting factors; enough/plenty of, (named) nutrients; stationary phase: no more reproduction; limiting factors; none/reduction in, (named) nutrients; build-up of, toxic waste/alcohol; reference to carrying capacity;	max 3	e.g. glucose, sugar, ammonia, ammoni (compounds), minerals A low alcohol/toxin, concentration/correct pH A no growth of yeast (cells) A competition for nutrients A wrong pH
(e)	(named) alcohol production (for consumption); alcohol for fuel; bread making/making dough rise; yeast extract/probiotics/nutrient supplements; e.g. vegemite production of carbon dioxide; bioremediation;	max 2	A brewing/wine I baking unqualified
		[Total: 17]	

PhysicsAndMathsTutor.com

Question			E Answers			Marks	Additional Guidance
3	(a)		cell yeast human muscle cell	end prod aerobic c dioxide $/ \mathrm{CO}_{2}$ + water $/ \mathrm{H}_{2} \mathrm{O}$; carbon dioxide $/ \mathrm{CO}_{2}$ + water $/ \mathrm{H}_{2} \mathrm{O}$;	an respiration an carbon dioxide/ $/ \mathrm{CO}_{2}+$ alcohol/ethanol $/ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$; lactic acid lactate/ $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} / \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ 1 $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}$;${ }^{2}$	[4]	ignore ATP/energy
	(b)	$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ \\ 8 \\ 9 \\ 10 \\ 11 \\ \\ 12 \\ 13 \end{gathered}$	muscles need mor increase in removal of (increase anaerobic developin enough ; (productio increase in increase blood pre volume in removal of ref to adre	ract ; nergy ; eed for oxygen ore) carbon di aerobic respira piration also o xygen debt,/ox f) lactate/lactic roke volume (o blood flow/gluc re increase becau ases; eat; ine ;	ORA xide ; on ; curs ; gen not supplied fast acid ; heart) ; e/oxygen, to muscles ; ause heart rate/stroke	[max 5]	ignore 'breathing rate', 'ventilation rate', 'oxygen absorption', 'heart rate', 'blood pressure' (all are in the Table) \mathbf{R} repaying oxygen debt (occurs after exercise)
						[Total: 9]	

4	(a)	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\ & 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} \end{aligned}$		[2]	ignore word equation ignore energy / ATP \mathbf{R} if 2 is not included for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ $\mathbf{R} \mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ on either side
	(b)	biceps contracts triceps relaxes		[2]	accept ref to antagonistic pair of muscles
	(c)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	During: oxygen consumption increases as exercise starts levels off / increase slows down during the race data quote for consumption during the race After: starts to decrease, immediately at the end of the race / at 18 minutes gradually decreases after exercise rate returns to original / resting level data quote for consumption after exercise	[max 4]	Units must be stated at least once e.g. of Mpt 3: A plateaus between $2.1-2.4 \mathrm{dm}^{3} \mathrm{~min}^{1}$ Maximum is $2.4 \mathrm{dm}^{3} \mathrm{~min}^{1}$. $3-4 \mathrm{mins}$ /at start / 5 to 8 or 9 mins to reach maximum e.g. of Mpt 7: A Resting rate at $0.25 \mathrm{dm}^{3} \mathrm{~min}^{1}$, $9-10 \mathrm{mins}$ / at 18 to 27 or 28 min to reach original level
	(d)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	oxygen debt not enough oxygen supplied (to muscles) during exercise to muscles anaerobic respiration lactic acid produced lactic acid, broken down / respired / converted to glucose / CO_{2} and water / oxidized requires (extra) oxygen oxygen restored to haemoglobin AVP. e.g. restored to myoglobin (in muscles)	[max 5]	A lactate for lactic acid throughout the answer Mpt 6 R removed Ig lowers pH , muscles stiff / cramps
				Total: 13]	

